Please note, you must be an educator in higher ed or maybe high school to qualify to recieve the MCI
( 182594 Reads)
|Oxygen has a tendency to form very reactive by-products (H2O2 and O2-(superoxide)) inside a cell. These by-products create havoc by reacting with protein and DNA, thus inactivating them. Cells that are able to live in the presence of oxygen have evolved enzymes to cope with H2O2 and O2- and thus are not inhibited by O2. Also many anaerobes have oxygen labile Fe-S centers and no cellular machinery to protect them from the oxidizing power of oxygen. Organisms that cannot deal with the problems presented by oxygen cannot survive in air and are killed.
On the basis of oxygen tolerance, microorganisms can be placed into four classes. Strict aerobes cannot survive in the absence of oxygen and produce energy only by oxidative phosphorylation. Strict anaerobes, in many cases, generate energy by fermentation or by anaerobic respiration and are killed in the presence of oxygen. Aerotolerant anaerobes generate ATP only by fermentation, but have mechanisms to protect themselves from oxygen. Facultative anaerobes prefer to grow in the presence of oxygen, using oxidative phosphorylation, but can grow in an anaerobic environment using fermentation.
Oxygen utilization is a primary diagnostic tool when identifying microorganisms. Special media has been developed for the purposes of determining the oxygen relationship and method of metabolism (fermentation vs. respiration) of microorganisms. One such medium, Thioglycollate Agar is useful for determining the oxygen relationship of a microorganism. The medium contains thioglycollic acid, cystine and 0.35% agar, among other things. The thioglycollic acid and agar prevent oxygen from entering the entire medium. A dye, resazurin, is used as an indicator of the amount of oxygen in the medium. Resazurin is red in the presence of oxygen and turns colorless under anaerobic conditions. The medium is steamed just before use, which removes all oxygen from the tubes. After inoculation and incubation, oxygen is able to diffuse into the top part of the medium and support growth aerobically, while the bottom half of the medium remains devoid of oxygen.
A second medium used to investigate the general type of metabolism used by a microorganism is glucose O/F medium. This is a rich medium that contains glucose as primary carbon source. A pH indicator dye, brom thymol blue, is added and is green/blue under alkaline-Oxidative conditions or yellow under acidic-Fermentative conditions. Each test organism is inoculated into two tubes of glucose O/F medium. One tube is overlaid with mineral oil and the other is not. The mineral oil serves as a barrier to oxygen, which helps to create an anaerobic environment.
In this experiment you will first investigate the reactions of several known microorganisms having different types of metabolism. You will determine the characteristic reactions of thioglycollate medium and glucose O/F medium. You will then use this information to determine the oxygen relationships and catabolism type of your two unknown isolates.
8 tubes of Glucose O/F Medium
4 tubes of sterile mineral oil
4 tubes of Thioglycollate Agar (melted, in 50 °C water bath)
Cultures of
Pseudomonas fluorescens
Clostridium sporogenes
Enterococcus faecalis
Escherichia coli
2 plates of Brain Heart Infusion Agar
Anaerobe jar
In this exercise we will be first testing the oxygen relationships of some known organisms in Glucose O/F medium and Thioglycollate Agar. This will give you a sense of inoculating test media and allow you to observe their characteristic reactions.
Figure 5.15 the catalase test
Figure 5.3. Motility of a gliding bacteria. The gliding motion of a Paenibacillus species on a solid surface. Note the gliding motion of the cells across the screen.